Affine plane curve evolution: a fully consistent scheme
نویسنده
چکیده
We present an accurate numerical scheme for the affine plane curve evolution and its morphological extension to grey-level images. This scheme is based on the iteration of a nonlocal, fully affine invariant and numerically stable operator, which can be exactly computed on polygons. The properties of this operator ensure that a few iterations are sufficient to achieve a very good accuracy, unlike classical finite difference schemes that generally require a lot of iterations. Convergence results are provided, as well as theoretical examples and experiments.
منابع مشابه
On the Affine Heat Equation for Non-convex Curves
In the past several years, there has been much research devoted to the study of evolutions of plane curves where the velocity of the evolving curve is given by the Euclidean curvature vector. This evolution appears in a number of different pure and applied areas such as differential geometry, crystal growth, and computer vision. See for example [4, 5, 6, 15, 16, 17, 19, 20, 35] and the referenc...
متن کاملSolution of nonlinearly curvature driven evolution of plane curves
The evolution of plane curves obeying the equation v = β(k), where v is normal velocity and k curvature of the curve is studied. Morphological image and shape multiscale analysis of Alvarez, Guichard, Lions and Morel and affine invariant scale space of curves introduced by Sapiro and Tannenbaum as well as isotropic motions of plane phase interfaces studied by Angenent and Gurtin are included in...
متن کاملOrr Sommerfeld Solver Using Mapped Finite Di?erence Scheme for Plane Wake Flow
Linear stability analysis of the three dimensional plane wake flow is performed using a mapped finite di?erence scheme in a domain which is doubly infinite in the cross–stream direction of wake flow. The physical domain in cross–stream direction is mapped to the computational domain using a cotangent mapping of the form y = ?cot(??). The Squire transformation [2], proposed by Squire, is also us...
متن کاملPii: S0168-9274(98)00130-5
The evolution of plane curves obeying the equation v = β(k), where v is normal velocity and k curvature of the curve is studied. Morphological image and shape multiscale analysis of Alvarez, Guichard, Lions and Morel and affine invariant scale space of curves introduced by Sapiro and Tannenbaum as well as isotropic motions of plane phase interfaces studied by Angenent and Gurtin are included in...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 7 3 شماره
صفحات -
تاریخ انتشار 1998